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Nematic liquid crystal in a tube: The Fréedericksz transition
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We study the configurations of a nematic liquid crystal confined between two concentric

cylinders, of radii r; and pr,>r,;, with homeotropic anchoring conditions at the walls.

For

p<p.=exp[mV (K, /K,)] the director is purely radial, while for p>p. the director “escapes into the
third dimension” and gains an axial component. This represents a geometrically induced Fréedericksz-
like transition. When combined with a radial field and a nematic liquid crystal with a dielectric anisotro-
py €,— €, >0, the critical voltage of the Fréedericksz transition can be made arbitrarily small. This is of
interest for liquid-crystal displays, since in the planar geometry the critical voltage is a material constant.
A related temperature-induced Fréedericksz-like transition is expected in semiflexible nematic polymers.

PACS number(s): 64.70.Md, 78.20.Jq, 61.25.Hq

The Fréedericksz transition is a second-order phase
transition which occurs in nematic fluids [1]. It reflects a
competition between an applied electric or magnetic field,
favoring distortion of the fluid, and an antagonistic elas-
tic penalty. The transition has been extensively studied
in planar configurations. In the following we present a
theoretical analysis of the Fréedericksz transition in a cy-
lindrical geometry involving a nematic fluid between two
concentric cylinders. A number of quantitatively novel
features appear in this configuration. The most remark-
able is the possibility of reducing the critical voltage ¥V,
by controlling the geometry, that is, the two radii. Such
an option is of practical interest in the design of liquid-
crystalline display devices. It is absent in the planar
configuration where V, is a material constant of order 2
V. Other features of interest are the possibility of trigger-
ing a Fréedericksz-like transition in the absence of exter-
nal fields. This can be attained by control of dimensions
and, for polymeric liquid crystals [2], by a change of tem-
perature.

The familiar, planar Fréedericksz transition occurs in
thin nematic layers, of width L, confined between two
plates. Two ingredients are involved. The first is the
boundary conditions. In the simplest configurations the
two surfaces impose identical orientation on the adjacent
nematic fluid. This surface-induced orientation is known
as anchoring. In the following we refer to homogeneous
and homeotropic anchoring where the nematic director n
at the interface is respectively parallel and perpendicular
to the surface. In the absence of a field n throughout the
sample adopts an identical orientation set by the surfaces.
The second ingredient is an external field favoring n
oriented perpendicularly to the direction set by the an-
choring. When the field is weak the surface orientation is
dominant and n is not modified by the field. A nematic
distortion occurs when the field is stronger than the criti-
cal field E,. The distortion reflects an interplay between
the tendency of the bulk nematic to orient with the field
and the elastic penalty due to the intrafacial orientation
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imposed by the anchoring. Roughly speaking the transi-
tion occurs when the distortion energy is comparable to
the energy of the undistorted nematic in the field. The
distortion energy per unit area (K /L?)L is comparable to
the field contribution, eE2L for E, ~(K /€)!/?/L. Here E
is the electric field strength and e=¢, —¢ is the dielectric
anisotropy. A more detailed analysis leads to

E.=(w/L)K /€)' . (1
Two features of the planar case should be noted for com-
parison purposes. (i) The electric field is uniform
throughout the layer. (ii) The field-free ground state is
undistorted, i.e., n is identical everywhere. As we shall
discuss, the Fréedericksz transition in the cylindrical case
differs with respect to these two points. First, the electric
field is nonuniform. In particular, the field between two
concentric cylinders of radii », and r,=pr,>r, is
E=V/(rlnp), where V=V(r;)—V(r,) is the voltage
across the cylinders. Second, for an appropriate choice
of anchoring conditions, the field-free ground state is al-
ready distorted. No such distortion is expected for
homogeneous anchoring parallel to the axis of the
cylinder, the z axis. Nematic distortions do occur in the
presence of homogeneous alignment perpendicular to z
and in the case of homeotropic anchoring. In the absence
of the inner cylinder, when r; =0, these distortions result
in “‘escape into the third dimension” [1,3,4]. Thus, in the
case of homeotropic anchoring, the nematic develops an
axial component to avoid prohibitive penalties due to
splay. By inserting the inner cylinder we gain control
over the distortion penalties. It is thus possible to trigger
the axial distortion by adjusting r,. This Fréedericksz-
like transition takes place in the absence of an external
field. In turn, by making r, “subcritical” we can make
the critical voltage V, of the Fréedericksz transition arbi-
trarily small. The double cylinder geometry, in the ab-
sence of a field, was examined earlier in the context of de-
fect structure, both experimentally and theoretically
[3-6]. In certain situations the control may be attained
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by varying the temperature 7, rather than the geometry.
In the homeotropic anchoring case the axial distortion
relieves the splay at the price of a bend distortion. It is
thus possible to trigger an escape into the third dimen-
sion by changing the relative values of K; and K, the
splay and bend elastic constants. This strategy may be
realized for semiflexible, thermotropic liquid-crystalline
polymers (LCP’s) [2]. The K, of such LCP’s exhibits an
exponential T dependence, while K, is only a weak func-
tion of T. The strong T dependence of K| is traceable to
the presence of thermally activated hairpin defects
[7-10]. At high temperatures, there are many hairpins,
and K is small. On the other hand, K; becomes very
large at low temperatures when the hairpins are annealed
out of the chains, which become rodlike. Accordingly, it
is possible to trigger a temperature-induced
Fréedericksz-like transition by lowering 7, thus increas-
ing K.

We now present a more quantitative analysis of these
effects, focusing, for brevity, on the case of homeotropic
anchoring. In this case we require that the dielectric
constants perpendicular and parallel to n satisfy
€=¢€,—¢€,;>0. Thus an applied field favors perpendicular
alignment of n and E. The free energy per unit length of
the cylinder is [1]

F=gfr12dr 277 [K,(V-n)+K,|n X (VXn)?

—e(n-E(r))*—P-E] . )
The integrand is f2mr dr, where f /2 is the free-energy
density of the nematic, allowing for four contributions.
The first two reflect the distortion penalties due to splay
and bend. The third term allows for the dielectric contri-
bution due to the induced dipole €(E-n)n. Finally, the
last term accounts for flexoelectricity, that is, the bulk
electric polarization induced by the nematic distortion
P=kn-Vn+k (VXn)Xn, where k, and k” are the flex-
oelectric coefficients. The detailed effect of the last term
is beyond the scope of this Rapid Communication.
Suffice it to say that it does not modify the functional
form of the resulting F, but may affect the numerical con-
stants involved and the resulting phase behavior. A de-
tailed discussion of this issue will be presented elsewhere.
We use the following parametrization for the director in
cylindrical coordinates n=(n,,n,n,)=(cosa,0, sina).
The boundary conditions at the walls are those of homeo-
tropic, perpendicular anchoring, =0 at r=r,7,. In a
purely radial configuration we have a=0 throughout the
sample and a state of pure splay. This state we refer to as
the ground state. When a becomes nonzero a bend dis-
tortion occurs, which relieves some of the splay. By sym-
metry there is no variation in the z or ¢ directions in the
distorted state of lowest free energy. To detect the onset
of the phase transition, knowing it is of second order [1],
it is sufficient to consider small deformations about
pure splay, a(r)=0. Thus f=K,r %(drcosa/dr )2
+K,(d sina/dr)*—eE?*cos’a reduces, upon expansion
to second order in a and deletion of terms independent of
a to f=~—K.r %d(ra®)/dr+K,(da/dr)*—eE%?. In-
tegration, allowing for a =0 at the boundaries and know-
ing that E =V /r Inp, yields
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Extremization of (3) with respect to the unknown func-
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where g=m(V/ v, )/Inp and V, =mvV'K » /€ is the critical
voltage for the Fréedericksz transition in the planar
geometry. This has the trivial, pure splay solution a=0.
Nontrivial solutions can be found by using the guess
a(r)=r"%, with an undetermined w, or by the substitution
x=In(r/r|). Either way, the nontrivial solutions are
al(r)= A sin[V/ (K, /K,)+g%n(r/r,)+6], where 4 and
6 are constants. The anchoring conditions at the walls
imply \/(KS /K, )+g%lnp=mm, with m an integer. The
nontrivial solution of lowest energy corresponds to
m =1. This first occurs for a critical voltage (Fig. 1)

V.=V,[1—(K,/K,)(Inp/m)?*]'/?, (5)

where we have used our definition of g. Accordingly, for
p>p,. given by

p.=exp(mV' K, /K,) , (6)

the critical voltage is zero, i.e., a Fréedericksz-like transi-
tion occurs in the absence of an applied field. For p <p,
an external field is necessary for the transition to occur.
However, the characteristic V, is reduced. Furthermore,
for p close to p,., V, approaches zero as

V.=V,(2/Inp ) *(1—p/p)'"* . (7

The critical voltage (5) can be understood simply as fol-
lows. Using the new coordinate x =In(r /r;), the free en-

ergy (3) has the form fpdx[(da/dx)z—(g2+1(b/
K,)a?]. The derivative term in this expression is the
2r,
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FIG. 1. The critical voltage V. /¥, for the Fréedericksz tran-
sition in the cylindrical geometry as a function of the radius ra-
tio of the two cylinders p=r,/r, for the case where K;=K,.
The insets present side views of the system in the (a) pure splay
and (b) “escaped” splay-bend configurations.
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bend penalty, and is approximately Inp(4 /Inp)?
= A?/Inp. The second term is the decrease in splay and
electric energy and is roughly (g2+K,/K,) A% At the
transition we expect these two to be equal. Equating
them gives an approximation to (5). Physically the pure
splay state is one of high energy, and is forced upon the
system by geometry and anchoring. For extreme
geometries p>p,. the system escapes into the third di-
mension, and relieves splay at the expense of bend. When
p <p., the effect does not occur in the absence of a field.
However, the necessary field is weaker.

As seen from (6), p, depends exponentially on the ratio
K, /K,. For monomeric nematics, K, =K [1] and p, is
fairly close to e™=~23 and is weakly temperature depen-
dent. A radically different situation appears in main
chain LCP’s. For rigid mesogens, chain ends are neces-
sary to accommodate splay. However, for rigid poly-
mers, the concentration of free ends is small and splay is
difficult. In the case of perfectly rigid rods of length I,
the splay constant, as calculated by Meyer [9], is
K,~kTa ?l,, where a is a monomer size. Splay is some-
what easier for semiflexible LCP’s. These are fully ex-
tended only at low temperatures. At higher temperatures
such LCP’s support hairpin defects [7-9]. These are
abrupt reversals in the trajectory of the chain which
store an energy of U,. The hairpins are thermal
excitations and their average number » in a chain of
length L exhibits a Boltzmann 7T dependence with
n=(L /lexp(— U, /kT). Here [ is a microscopic length
associated with the localization of a single hairpin. By
treating each chain segment between hairpins as an
effective rod we can estimate the splay constant for a
semiflexible chain K, ~kTa %l exp(U,/kT). This has
the Boltzmann T dependence that is typical of all proper-
ties that depend on hairpins. For specificity we use
the bend-splay ratio as obtained Ub.\;kTPetschek and
Terentjev [11-18] K, /K,~f(T)e *", with f(T)
=(a/l, XU, /kT)'’*, where I, is the bare persistance
length of the chain. In these terms the temperature
dependence of p, of an LCP is

p.=exp{mf V2exp[ — U, /(2kT)]} . (8)
p. exhibits a very strong temperature dependence, an ex-
ponential of an exponential, and for kT <0.1U,, p, is
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very close to 1. This implies that a Fréedericksz-like
transition is favored even for very weakly bent plates, i.e.,
(ry—ry)/ri=p—1=0. In marked contrast, p—1~20
for monomeric nematics. Thus the behavior of polymeric
nematics in the cylindrical geometry is expected to be
quantitatively different from their monomeric counter-
parts.

Our discussion of nematic fluids between concentric
cylinders leads to two main conclusions. First, for a
proper choice of anchoring conditions it is possible to
have a Fréedericksz-like transition in the absence of an
external field. The transition can be triggered by control
of the ratio of the two radii or, in the case of LCP’s, by a
change of temperature. Second, by combining the first
effect with the familiar Fréedericksz transition it is possi-
ble to make the critical voltage arbitrarily small. For
LCP’s it is possible to combine all the ingredients. The
degree of curvature of the plates can be measured by
k=p—1=(r,—r;)/ry. The critical value k, is much less
than unity since K;>>K,. When p<p, and p=p, the
critical voltage is

V.=V,2" 21—k /K)"? . )

Since «, is very small ¥, can be made very small even for
weakly curved plates.

The effects considered above are due, essentially, to the
combination of geometry and anchoring conditions.
Similar scenarios may be obtained by using a variety of
constrained LCP’s rather than geometry. One example
involves a Fréedericksz-like transition driven by the
confinement of free LCP’s in a slit imposing homeotropic
anchoring [19,20]. The second combines the
Fréedericksz transition with an anchoring transition due
to tethered LCP’s grafted onto a surface imposing homo-
geneous anchoring [21,22]. Tt is possible to make V, arbi-
trarily small in both cases. In these systems the deforma-
tion free energy of the LCP’s plays the role of the splay
energy in our problem.
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